Cytostellin distributes to nuclear regions enriched with splicing factors.
نویسندگان
چکیده
Cytostellin, a approximately 240 kDa phosphoprotein found in all cells examined from human to yeast, is predominantly intranuclear in interphase mammalian cells and undergoes continuous redistribution during the cell cycle. Here, mammalian cytostellin is shown to localize to intranuclear regions enriched with multiple splicing proteins, including spliceosome assembly factor, SC-35. Cytostellin and the splicing proteins also co-localize to discrete foci (called 'dots'), which are distributed throughout the cell during mitosis and part of G1. The cytostellin that is localized to these dots resists extraction by Triton X-100, indicating that it is tightly associated with insoluble cell structures. All immunostainable cytostellin reappears in the nucleus before S-phase. Although cytostellin and the splicing proteins co-localize in interphase and dividing cells, cytostellin is not detected in purified spliceosomes, and it associates with six unidentified proteins, forming a macromolecular complex that is biochemically distinct from the proteins that comprise spliceosomes. This macromolecular complex is detected at constant levels throughout the cell cycle, and the level of cytostellin protein remains constant during the cell cycle. Nevertheless, intranuclear cytostellin immunostaining fluctuates markedly during the cell cycle. The monoclonal antibody (mAb) H5 epitope of cytostellin is 'masked' in serum-starved cells, but 60 minutes after serum stimulation intense cytostellin immunoreactivity appears in the nuclear speckles. This rapid induction of cytostellin immunoreactivity in subnuclear regions enriched with many splicing factors, as well as accumulations of RNA polymerase II (Pol II) transcripts, suggests that cytostellin may have a function related to mRNA biogenesis.
منابع مشابه
Hypophosphorylated SR splicing factors transiently localize around active nucleolar organizing regions in telophase daughter nuclei
Upon completion of mitosis, daughter nuclei assemble all of the organelles necessary for the implementation of nuclear functions. We found that upon entry into daughter nuclei, snRNPs and SR proteins do not immediately colocalize in nuclear speckles. SR proteins accumulated in patches around active nucleolar organizing regions (NORs) that we refer to as NOR-associated patches (NAPs), whereas sn...
متن کاملCytostellin: a novel, highly conserved protein that undergoes continuous redistribution during the cell cycle.
Cytostellin, a 240 kDa protein, has been purified from mammalian cells by immunoaffinity chromatography using monoclonal antibody H5. Immunofluorescence microscopy shows diffuse and punctate cytostellin immunoreactivity in interphase nuclei. Nuclease digestion and salt extraction are not required to expose the epitope. The onset of prophase is marked by the appearance of multiple intensely immu...
متن کاملSplicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors.
Before being transported to the cytoplasm, intron-containing pre-mRNAs have to be spliced somewhere in the cell nucleus. Efficient splicing requires an ordered assembly of splicing factors onto the pre-mRNAs. To accomplish this, intron containing genes may be preferentially localized at nuclear sites enriched for splicing factors or alternatively, splicing factors may circulate throughout the n...
متن کاملNuclear speckles.
Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20-50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange c...
متن کاملIdentification and experimental validation of splicing regulatory elements in Drosophila melanogaster reveals functionally conserved splicing enhancers in metazoans.
RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 107 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1994